Scientists Synthesise Next-Generation Wonder Material Graphyne, an Allotrope of Carbon, for the Firs

Author : Dhowcruise
Publish Date : 2022-05-21 00:00:00


Scientists Synthesise Next-Generation Wonder Material Graphyne, an Allotrope of Carbon, for the Firs

Scientists have long tried to create new allotropes (forms) of carbon because of their versatility and usefulness for the industry. But only limited success was achieved so far. That is set to change now. In a major breakthrough, researchers at the University of Colorado Boulder, US, have successfully synthesised the long-hypothesised “next-generation wonder material” graphyne. An allotrope of carbon, graphyne is similar to graphene, which is highly valued by industry. In fact, the research on graphene was awarded the Nobel Prize in Physics in 2010. However, scientists were able to create only a few fragments before now, despite decades of work and theorising. Carbon allotropes like graphene and fullerene were created using traditional chemistry methods. But these methods don't allow synthesis of different forms of carbon in large capacity, like what's required for graphyne. Wei Zhang, a professor of chemistry at CU Boulder, then decided to give it a try. Zhang studies reversible chemistry which allows bonds to self-correct, allowing for the creation of novel ordered structures. Using a process called alkyne metathesis as well as thermodynamics and kinetic control, the researchers were able to successfully create a material that could rival the conductivity of graphene but with control. “There's a pretty big difference (between graphene and graphyne) but in a good way,” said Zhang. “This could be the next generation of a wonder material. That's why people are very excited.”

Scientists have long tried to create new allotropes (forms) of carbon because of their versatility and usefulness for the industry. But only limited success was achieved so far. That is set to change now. In a major breakthrough, researchers at the University of Colorado Boulder, US, have successfully synthesised the long-hypothesised “next-generation wonder material” graphyne. An allotrope of carbon, graphyne is similar to graphene, which is highly valued by industry. In fact, the research on graphene was awarded the Nobel Prize in Physics in 2010. However, scientists were able to create only a few fragments before now, despite decades of work and theorising. Carbon allotropes like graphene and fullerene were created using traditional chemistry methods. But these methods don't allow synthesis of different forms of carbon in large capacity, like what's required for graphyne. Wei Zhang, a professor of chemistry at CU Boulder, then decided to give it a try. Zhang studies reversible chemistry which allows bonds to self-correct, allowing for the creation of novel ordered structures. Using a process called alkyne metathesis as well as thermodynamics and kinetic control, the researchers were able to successfully create a material that could rival the conductivity of graphene but with control. “There's a pretty big difference (between graphene and graphyne) but in a good way,” said Zhang. “This could be the next generation of a wonder material. That's why people are very excited.”Scientists have long tried to create new allotropes (forms) of carbon because of their versatility and usefulness for the industry. But only limited success was achieved so far. That is set to change now. In a major breakthrough, researchers at the University of Colorado Boulder, US, have successfully synthesised the long-hypothesised “next-generation wonder material” graphyne. An allotrope of carbon, graphyne is similar to graphene, which is highly valued by industry. In fact, the research on graphene was awarded the Nobel Prize in Physics in 2010. However, scientists were able to create only a few fragments before now, despite decades of work and theorising. Carbon allotropes like graphene and fullerene were created using traditional chemistry methods. But these methods don't allow synthesis of different forms of carbon in large capacity, like what's required for graphyne. Wei Zhang, a professor of chemistry at CU Boulder, then decided to give it a try. Zhang studies reversible chemistry which allows bonds to self-correct, allowing for the creation of novel ordered structures. Using a process called alkyne metathesis as well as thermodynamics and kinetic control, the researchers were able to successfully create a material that could rival the conductivity of graphene but with control. “There's a pretty big difference (between graphene and graphyne) but in a good way,” said Zhang. “This could be the next generation of a wonder material. That's why people are very excited.”Scientists have long tried to create new allotropes (forms) of carbon because of their versatility and usefulness for the industry. But only limited success was achieved so far. That is set to change now. In a major breakthrough, researchers at the University of Colorado Boulder, US, have successfully synthesised the long-hypothesised “next-generation wonder material” graphyne. An allotrope of carbon, graphyne is similar to graphene, which is highly valued by industry. In fact, the research on graphene was awarded the Nobel Prize in Physics in 2010. However, scientists were able to create only a few fragments before now, despite decades of work and theorising. Carbon allotropes like graphene and fullerene were created using traditional chemistry methods. But these methods don't allow synthesis of different forms of carbon in large capacity, like what's required for graphyne. Wei Zhang, a professor of chemistry at CU Boulder, then decided to give it a try. Zhang studies reversible chemistry which allows bonds to self-correct, allowing for the creation of novel ordered structures. Using a process called alkyne metathesis as well as thermodynamics and kinetic control, the researchers were able to successfully create a material that could rival the conductivity of graphene but with control. “There's a pretty big difference (between graphene and graphyne) but in a good way,” said Zhang. “This could be the next generation of a wonder material. That's why people are very excited.”Scientists have long tried to create new allotropes (forms) of carbon because of their versatility and usefulness for the industry. But only limited success was achieved so far. That is set to change now. In a major breakthrough, researchers at the University of Colorado Boulder, US, have successfully synthesised the long-hypothesised “next-generation wonder material” graphyne. An allotrope of carbon, graphyne is similar to graphene, which is highly valued by industry. In fact, the research on graphene was awarded the Nobel Prize in Physics in 2010. However, scientists were able to create only a few fragments before now, despite decades of work and theorising. Carbon allotropes like graphene and fullerene were created using traditional chemistry methods. But these methods don't allow synthesis of different forms of carbon in large capacity, like what's required for graphyne. Wei Zhang, a professor of chemistry at CU Boulder, then decided to give it a try. Zhang studies reversible chemistry which allows bonds to self-correct, allowing for the creation of novel ordered structures. Using a process called alkyne metathesis as well as thermodynamics and kinetic control, the researchers were able to successfully create a material that could rival the conductivity of graphene but with control. “There's a pretty big difference (between graphene and graphyne) but in a good way,” said Zhang. “This could be the next generation of a wonder material. That's why people are very excited.”Scientists have long tried to create new allotropes (forms) of carbon because of their versatility and usefulness for the industry. But only limited success was achieved so far. That is set to change now. In a major breakthrough, researchers at the University of Colorado Boulder, US, have successfully synthesised the long-hypothesised “next-generation wonder material” graphyne. An allotrope of carbon, graphyne is similar to graphene, which is highly valued by industry. In fact, the research on graphene was awarded the Nobel Prize in Physics in 2010. However, scientists were able to create only a few fragments before now, despite decades of work and theorising. Carbon allotropes like graphene and fullerene were created using traditional chemistry methods. But these methods don't allow synthesis of different forms of carbon in large capacity, like what's required for graphyne. Wei Zhang, a professor of chemistry at CU Boulder, then decided to give it a try. Zhang studies reversible chemistry which allows bonds to self-correct, allowing for the creation of novel ordered structures. Using a process called alkyne metathesis as well as thermodynamics and kinetic control, the researchers were able to successfully create a material that could rival the conductivity of graphene but with control. “There's a pretty big difference (between graphene and graphyne) but in a good way,” said Zhang. “This could be the next generation of a wonder material. That's why people are very excited.”Scientists have long tried to create new allotropes (forms) of carbon because of their versatility and usefulness for the industry. But only limited success was achieved so far. That is set to change now. In a major breakthrough, researchers at the University of Colorado Boulder, US, have successfully synthesised the long-hypothesised “next-generation wonder material” graphyne. An allotrope of carbon, graphyne is similar to graphene, which is highly valued by industry. In fact, the research on graphene was awarded the Nobel Prize in Physics in 2010. However, scientists were able to create only a few fragments before now, despite decades of work and theorising. Carbon allotropes like graphene and fullerene were created using traditional chemistry methods. But these methods don't allow synthesis of different forms of carbon in large capacity, like what's required for graphyne. Wei Zhang, a professor of chemistry at CU Boulder, then decided to give it a try. Zhang studies reversible chemistry which allows bonds to self-correct, allowing for the creation of novel ordered structures. Using a process called alkyne metathesis as well as thermodynamics and kinetic control, the researchers were able to successfully create a material that could rival the conductivity of graphene but with control. “There's a pretty big difference (between graphene and graphyne) but in a good way,” said Zhang. “This could be the next generation of a wonder material. That's why people are very excited.”Scientists have long tried to create new allotropes (forms) of carbon because of their versatility and usefulness for the industry. But only limited success was achieved so far. That is set to change now. In a major breakthrough, researchers at the University of Colorado Boulder, US, have successfully synthesised the long-hypothesised “next-generation wonder material” graphyne. An allotrope of carbon, graphyne is similar to graphene, which is highly valued by industry. In fact, the research on graphene was awarded the Nobel Prize in Physics in 2010. However, scientists were able to create only a few fragments before now, despite decades of work and theorising. Carbon allotropes like graphene and fullerene were created using traditional chemistry methods. But these methods don't allow synthesis of different forms of carbon in large capacity, like what's required for graphyne. Wei Zhang, a professor of chemistry at CU Boulder, then decided to give it a try. Zhang studies reversible chemistry which



Category :travel

Poll Of Polls Gives Second Term To BJP In Uttar Pradesh

Poll Of Polls Gives Second Term To BJP In Uttar Pradesh

- Poll of Exit Poll 2022: The polls predict that the BJP will win the most seats in Goa and Uttarakhand, with the Congress a


Bengal Congress Spokesperson Arrested For Remarks Against Mamata Banerjee

Bengal Congress Spokesperson Arrested For Remarks Against Mamata Banerjee

- West Bengal Congress spokesperson Kaustav Bagchi was on Saturday morning arrested from his residence for his alleged


Cannes 2022: Deepika Padukone Is A Sight To Behold As She Steps Out In Black

Cannes 2022: Deepika Padukone Is A Sight To Behold As She Steps Out In Black

- New Delhi: Deepika Padukone has chosen black again for his fifth day at Cannes 2022. The actress


Russia Bars Entry To US Vice President Kamala Harris And Mark Zuckerberg

Russia Bars Entry To US Vice President Kamala Harris And Mark Zuckerberg

- The Russian foreign ministry said the travel ban, which also includes top Pentagon officials, US business leaders



Category